MakeItFrom.com
Menu (ESC)

C46400 Brass vs. 513.0 Aluminum

C46400 brass belongs to the copper alloys classification, while 513.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C46400 brass and the bottom bar is 513.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 17 to 40
5.7
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 270 to 310
170
Tensile Strength: Ultimate (UTS), MPa 400 to 500
200
Tensile Strength: Yield (Proof), MPa 160 to 320
120

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
640
Melting Onset (Solidus), °C 890
590
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
34
Electrical Conductivity: Equal Weight (Specific), % IACS 29
110

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.8
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 14 to 17
20
Strength to Weight: Bending, points 15 to 17
28
Thermal Diffusivity, mm2/s 38
54
Thermal Shock Resistance, points 13 to 16
8.8

Alloy Composition

Aluminum (Al), % 0
91.9 to 95.1
Copper (Cu), % 59 to 62
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0
0 to 0.3
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 36.3 to 40.5
1.4 to 2.2
Residuals, % 0
0 to 0.15