MakeItFrom.com
Menu (ESC)

C46400 Brass vs. AISI 415 Stainless Steel

C46400 brass belongs to the copper alloys classification, while AISI 415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17 to 40
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 310
550
Tensile Strength: Ultimate (UTS), MPa 400 to 500
900
Tensile Strength: Yield (Proof), MPa 160 to 320
700

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
780
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
24
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 47
35
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
140
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
1250
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14 to 17
32
Strength to Weight: Bending, points 15 to 17
26
Thermal Diffusivity, mm2/s 38
6.4
Thermal Shock Resistance, points 13 to 16
33

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
77.8 to 84
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0