MakeItFrom.com
Menu (ESC)

C46400 Brass vs. EN 1.4630 Stainless Steel

C46400 brass belongs to the copper alloys classification, while EN 1.4630 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17 to 40
23
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 310
300
Tensile Strength: Ultimate (UTS), MPa 400 to 500
480
Tensile Strength: Yield (Proof), MPa 160 to 320
250

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
800
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 47
36
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
92
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14 to 17
17
Strength to Weight: Bending, points 15 to 17
18
Thermal Diffusivity, mm2/s 38
7.5
Thermal Shock Resistance, points 13 to 16
17

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 59 to 62
0 to 0.5
Iron (Fe), % 0 to 0.1
77.1 to 86.7
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0.2 to 1.5
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0