MakeItFrom.com
Menu (ESC)

C46400 Brass vs. CC382H Copper-nickel

Both C46400 brass and CC382H copper-nickel are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
140
Elongation at Break, % 17 to 40
20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
53
Tensile Strength: Ultimate (UTS), MPa 400 to 500
490
Tensile Strength: Yield (Proof), MPa 160 to 320
290

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
260
Melting Completion (Liquidus), °C 900
1180
Melting Onset (Solidus), °C 890
1120
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
41
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.2
Embodied Energy, MJ/kg 47
76
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
85
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
290
Stiffness to Weight: Axial, points 7.2
8.8
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 14 to 17
15
Strength to Weight: Bending, points 15 to 17
16
Thermal Diffusivity, mm2/s 38
8.2
Thermal Shock Resistance, points 13 to 16
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 59 to 62
62.8 to 68.4
Iron (Fe), % 0 to 0.1
0.5 to 1.0
Lead (Pb), % 0 to 0.2
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 36.3 to 40.5
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.4
0