MakeItFrom.com
Menu (ESC)

C46400 Brass vs. N06002 Nickel

C46400 brass belongs to the copper alloys classification, while N06002 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 17 to 40
41
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
81
Shear Strength, MPa 270 to 310
520
Tensile Strength: Ultimate (UTS), MPa 400 to 500
760
Tensile Strength: Yield (Proof), MPa 160 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 900
1360
Melting Onset (Solidus), °C 890
1260
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 120
9.9
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
55
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 2.7
9.3
Embodied Energy, MJ/kg 47
130
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
250
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
230
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 14 to 17
25
Strength to Weight: Bending, points 15 to 17
22
Thermal Diffusivity, mm2/s 38
2.6
Thermal Shock Resistance, points 13 to 16
19

Alloy Composition

Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
17 to 20
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
42.3 to 54
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0