MakeItFrom.com
Menu (ESC)

C46400 Brass vs. N08020 Stainless Steel

C46400 brass belongs to the copper alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17 to 40
15 to 34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 270 to 310
380 to 410
Tensile Strength: Ultimate (UTS), MPa 400 to 500
610 to 620
Tensile Strength: Yield (Proof), MPa 160 to 320
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1410
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
38
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.7
6.6
Embodied Energy, MJ/kg 47
92
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
180 to 440
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14 to 17
21
Strength to Weight: Bending, points 15 to 17
20
Thermal Diffusivity, mm2/s 38
3.2
Thermal Shock Resistance, points 13 to 16
15

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 59 to 62
3.0 to 4.0
Iron (Fe), % 0 to 0.1
29.9 to 44
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0