MakeItFrom.com
Menu (ESC)

C46400 Brass vs. N10629 Nickel

C46400 brass belongs to the copper alloys classification, while N10629 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is N10629 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
220
Elongation at Break, % 17 to 40
45
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
83
Shear Strength, MPa 270 to 310
600
Tensile Strength: Ultimate (UTS), MPa 400 to 500
860
Tensile Strength: Yield (Proof), MPa 160 to 320
400

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
910
Melting Completion (Liquidus), °C 900
1610
Melting Onset (Solidus), °C 890
1560
Specific Heat Capacity, J/kg-K 380
390
Thermal Expansion, µm/m-K 21
10

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.0
9.2
Embodied Carbon, kg CO2/kg material 2.7
15
Embodied Energy, MJ/kg 47
190
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
320
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
360
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
22
Strength to Weight: Axial, points 14 to 17
26
Strength to Weight: Bending, points 15 to 17
22
Thermal Shock Resistance, points 13 to 16
27

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
0.5 to 1.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 59 to 62
0 to 0.5
Iron (Fe), % 0 to 0.1
1.0 to 6.0
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
65 to 72.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0