MakeItFrom.com
Menu (ESC)

C46400 Brass vs. S44627 Stainless Steel

C46400 brass belongs to the copper alloys classification, while S44627 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17 to 40
24
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
80
Shear Strength, MPa 270 to 310
310
Tensile Strength: Ultimate (UTS), MPa 400 to 500
490
Tensile Strength: Yield (Proof), MPa 160 to 320
300

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
220
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14 to 17
18
Strength to Weight: Bending, points 15 to 17
18
Thermal Diffusivity, mm2/s 38
4.6
Thermal Shock Resistance, points 13 to 16
16

Alloy Composition

Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 59 to 62
0 to 0.2
Iron (Fe), % 0 to 0.1
69.2 to 74.2
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0