MakeItFrom.com
Menu (ESC)

C46500 Brass vs. C69700 Brass

Both C46500 brass and C69700 brass are copper alloys. They have 79% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 18 to 50
25
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
41
Shear Strength, MPa 280 to 380
300
Tensile Strength: Ultimate (UTS), MPa 380 to 610
470
Tensile Strength: Yield (Proof), MPa 190 to 490
230

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
160
Melting Completion (Liquidus), °C 900
930
Melting Onset (Solidus), °C 890
880
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 120
43
Thermal Expansion, µm/m-K 21
19

Otherwise Unclassified Properties

Base Metal Price, % relative 23
26
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 47
44
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
99
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
250
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 13 to 21
16
Strength to Weight: Bending, points 15 to 20
16
Thermal Diffusivity, mm2/s 38
13
Thermal Shock Resistance, points 13 to 20
16

Alloy Composition

Arsenic (As), % 0.020 to 0.060
0
Copper (Cu), % 59 to 62
75 to 80
Iron (Fe), % 0 to 0.1
0 to 0.2
Lead (Pb), % 0 to 0.2
0.5 to 1.5
Manganese (Mn), % 0
0 to 0.4
Silicon (Si), % 0
2.5 to 3.5
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.2 to 40.5
13.9 to 22
Residuals, % 0
0 to 0.5