MakeItFrom.com
Menu (ESC)

C46500 Brass vs. C87610 Bronze

Both C46500 brass and C87610 bronze are copper alloys. They have 65% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 18 to 50
22
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 380 to 610
350
Tensile Strength: Yield (Proof), MPa 190 to 490
140

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 900
970
Melting Onset (Solidus), °C 890
820
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 29
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
29
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 47
43
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
62
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
88
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 13 to 21
11
Strength to Weight: Bending, points 15 to 20
13
Thermal Diffusivity, mm2/s 38
8.1
Thermal Shock Resistance, points 13 to 20
13

Alloy Composition

Arsenic (As), % 0.020 to 0.060
0
Copper (Cu), % 59 to 62
90 to 94
Iron (Fe), % 0 to 0.1
0 to 0.2
Lead (Pb), % 0 to 0.2
0 to 0.2
Manganese (Mn), % 0
0 to 0.25
Silicon (Si), % 0
3.0 to 5.0
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.2 to 40.5
3.0 to 5.0
Residuals, % 0
0 to 0.5