MakeItFrom.com
Menu (ESC)

C46500 Brass vs. C96300 Copper-nickel

Both C46500 brass and C96300 copper-nickel are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
130
Elongation at Break, % 18 to 50
11
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
49
Tensile Strength: Ultimate (UTS), MPa 380 to 610
580
Tensile Strength: Yield (Proof), MPa 190 to 490
430

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 120
240
Melting Completion (Liquidus), °C 900
1200
Melting Onset (Solidus), °C 890
1150
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 120
37
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
42
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.1
Embodied Energy, MJ/kg 47
76
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
59
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
720
Stiffness to Weight: Axial, points 7.2
8.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 13 to 21
18
Strength to Weight: Bending, points 15 to 20
17
Thermal Diffusivity, mm2/s 38
10
Thermal Shock Resistance, points 13 to 20
20

Alloy Composition

Arsenic (As), % 0.020 to 0.060
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 59 to 62
72.3 to 80.8
Iron (Fe), % 0 to 0.1
0.5 to 1.5
Lead (Pb), % 0 to 0.2
0 to 0.010
Manganese (Mn), % 0
0.25 to 1.5
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.2 to 40.5
0
Residuals, % 0
0 to 0.5