C46500 Brass vs. R05252 Alloy
C46500 brass belongs to the copper alloys classification, while R05252 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.
For each property being compared, the top bar is C46500 brass and the bottom bar is R05252 alloy.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
200 |
Elongation at Break, % | 18 to 50 | |
23 |
Poisson's Ratio | 0.31 | |
0.33 |
Shear Modulus, GPa | 40 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 380 to 610 | |
310 |
Tensile Strength: Yield (Proof), MPa | 190 to 490 | |
220 |
Thermal Properties
Latent Heat of Fusion, J/g | 170 | |
140 |
Specific Heat Capacity, J/kg-K | 380 | |
140 |
Thermal Expansion, µm/m-K | 21 | |
6.7 |
Otherwise Unclassified Properties
Density, g/cm3 | 8.0 | |
17 |
Embodied Water, L/kg | 330 | |
600 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 99 to 160 | |
63 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 170 to 1170 | |
120 |
Stiffness to Weight: Axial, points | 7.2 | |
6.5 |
Stiffness to Weight: Bending, points | 20 | |
12 |
Strength to Weight: Axial, points | 13 to 21 | |
5.2 |
Strength to Weight: Bending, points | 15 to 20 | |
6.1 |
Thermal Shock Resistance, points | 13 to 20 | |
17 |
Alloy Composition
Arsenic (As), % | 0.020 to 0.060 | |
0 |
Carbon (C), % | 0 | |
0 to 0.010 |
Copper (Cu), % | 59 to 62 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.0015 |
Iron (Fe), % | 0 to 0.1 | |
0 to 0.010 |
Lead (Pb), % | 0 to 0.2 | |
0 |
Molybdenum (Mo), % | 0 | |
0 to 0.020 |
Nickel (Ni), % | 0 | |
0 to 0.010 |
Niobium (Nb), % | 0 | |
0 to 0.1 |
Nitrogen (N), % | 0 | |
0 to 0.010 |
Oxygen (O), % | 0 | |
0 to 0.015 |
Silicon (Si), % | 0 | |
0 to 0.0050 |
Tantalum (Ta), % | 0 | |
88.8 to 91 |
Tin (Sn), % | 0.5 to 1.0 | |
0 |
Titanium (Ti), % | 0 | |
0 to 0.010 |
Tungsten (W), % | 0 | |
9.0 to 11 |
Zinc (Zn), % | 36.2 to 40.5 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |