MakeItFrom.com
Menu (ESC)

C46500 Brass vs. Z24311 Zinc

C46500 brass belongs to the copper alloys classification, while Z24311 zinc belongs to the zinc alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is Z24311 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
87
Elongation at Break, % 18 to 50
63
Poisson's Ratio 0.31
0.25
Shear Modulus, GPa 40
35
Tensile Strength: Ultimate (UTS), MPa 380 to 610
140
Tensile Strength: Yield (Proof), MPa 190 to 490
120

Thermal Properties

Latent Heat of Fusion, J/g 170
110
Maximum Temperature: Mechanical, °C 120
90
Melting Completion (Liquidus), °C 900
410
Melting Onset (Solidus), °C 890
400
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 21
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
27
Electrical Conductivity: Equal Weight (Specific), % IACS 29
37

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.0
6.6
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 47
53
Embodied Water, L/kg 330
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
85
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
81
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 13 to 21
6.1
Strength to Weight: Bending, points 15 to 20
9.3
Thermal Diffusivity, mm2/s 38
44
Thermal Shock Resistance, points 13 to 20
4.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0020
Arsenic (As), % 0.020 to 0.060
0
Cadmium (Cd), % 0
0 to 0.0050
Copper (Cu), % 59 to 62
0 to 0.0050
Iron (Fe), % 0 to 0.1
0 to 0.010
Lead (Pb), % 0 to 0.2
0.030 to 0.080
Magnesium (Mg), % 0
0 to 0.0015
Manganese (Mn), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.020
Zinc (Zn), % 36.2 to 40.5
99.862 to 100
Residuals, % 0 to 0.4
0