MakeItFrom.com
Menu (ESC)

C47940 Brass vs. 2030 Aluminum

C47940 brass belongs to the copper alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C47940 brass and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 14 to 34
5.6 to 8.0
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 250 to 310
220 to 250
Tensile Strength: Ultimate (UTS), MPa 380 to 520
370 to 420
Tensile Strength: Yield (Proof), MPa 160 to 390
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 850
640
Melting Onset (Solidus), °C 800
510
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 20
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
390 to 530
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 13 to 17
33 to 38
Strength to Weight: Bending, points 14 to 17
37 to 40
Thermal Diffusivity, mm2/s 36
50
Thermal Shock Resistance, points 13 to 17
16 to 19

Alloy Composition

Aluminum (Al), % 0
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 63 to 66
3.3 to 4.5
Iron (Fe), % 0.1 to 1.0
0 to 0.7
Lead (Pb), % 1.0 to 2.0
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0
0.2 to 1.0
Nickel (Ni), % 0.1 to 0.5
0
Silicon (Si), % 0
0 to 0.8
Tin (Sn), % 1.2 to 2.0
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 28.1 to 34.6
0 to 0.5
Residuals, % 0
0 to 0.3