MakeItFrom.com
Menu (ESC)

C47940 Brass vs. AWS BNi-5a

C47940 brass belongs to the copper alloys classification, while AWS BNi-5a belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is AWS BNi-5a.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 380 to 520
480

Thermal Properties

Latent Heat of Fusion, J/g 170
420
Melting Completion (Liquidus), °C 850
1150
Melting Onset (Solidus), °C 800
1070
Specific Heat Capacity, J/kg-K 380
500
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
55
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.8
9.0
Embodied Energy, MJ/kg 47
130
Embodied Water, L/kg 330
260

Common Calculations

Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 17
17
Strength to Weight: Bending, points 14 to 17
17
Thermal Shock Resistance, points 13 to 17
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
1.0 to 1.5
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
18.5 to 19.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 63 to 66
0
Iron (Fe), % 0.1 to 1.0
0 to 0.5
Lead (Pb), % 1.0 to 2.0
0
Nickel (Ni), % 0.1 to 0.5
70.1 to 73.5
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
7.0 to 7.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 1.2 to 2.0
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 28.1 to 34.6
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5