MakeItFrom.com
Menu (ESC)

C47940 Brass vs. CC332G Bronze

Both C47940 brass and CC332G bronze are copper alloys. They have 66% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 14 to 34
22
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 380 to 520
620
Tensile Strength: Yield (Proof), MPa 160 to 390
250

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 850
1060
Melting Onset (Solidus), °C 800
1010
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 110
45
Thermal Expansion, µm/m-K 20
18

Otherwise Unclassified Properties

Base Metal Price, % relative 25
29
Density, g/cm3 8.2
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 47
55
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
270
Stiffness to Weight: Axial, points 7.1
7.7
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 13 to 17
21
Strength to Weight: Bending, points 14 to 17
19
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 13 to 17
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Copper (Cu), % 63 to 66
80 to 86
Iron (Fe), % 0.1 to 1.0
1.0 to 3.0
Lead (Pb), % 1.0 to 2.0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0.1 to 0.5
1.5 to 4.0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 1.2 to 2.0
0 to 0.2
Zinc (Zn), % 28.1 to 34.6
0 to 0.5
Residuals, % 0 to 0.4
0