MakeItFrom.com
Menu (ESC)

C47940 Brass vs. CC754S Brass

Both C47940 brass and CC754S brass are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is CC754S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 14 to 34
11
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 380 to 520
320
Tensile Strength: Yield (Proof), MPa 160 to 390
160

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 130
120
Melting Completion (Liquidus), °C 850
830
Melting Onset (Solidus), °C 800
780
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 110
95
Thermal Expansion, µm/m-K 20
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
29
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
130
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 13 to 17
11
Strength to Weight: Bending, points 14 to 17
13
Thermal Diffusivity, mm2/s 36
31
Thermal Shock Resistance, points 13 to 17
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Copper (Cu), % 63 to 66
57 to 63
Iron (Fe), % 0.1 to 1.0
0 to 0.7
Lead (Pb), % 1.0 to 2.0
0.5 to 2.5
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.1 to 0.5
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 1.2 to 2.0
0 to 1.0
Zinc (Zn), % 28.1 to 34.6
30.2 to 42.5
Residuals, % 0 to 0.4
0