MakeItFrom.com
Menu (ESC)

C47940 Brass vs. C82500 Copper

Both C47940 brass and C82500 copper are copper alloys. They have 65% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 14 to 34
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 380 to 520
550 to 1100
Tensile Strength: Yield (Proof), MPa 160 to 390
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 130
280
Melting Completion (Liquidus), °C 850
980
Melting Onset (Solidus), °C 800
860
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 20
17

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
400 to 4000
Stiffness to Weight: Axial, points 7.1
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 13 to 17
18 to 35
Strength to Weight: Bending, points 14 to 17
17 to 27
Thermal Diffusivity, mm2/s 36
38
Thermal Shock Resistance, points 13 to 17
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 63 to 66
95.3 to 97.8
Iron (Fe), % 0.1 to 1.0
0 to 0.25
Lead (Pb), % 1.0 to 2.0
0 to 0.020
Nickel (Ni), % 0.1 to 0.5
0 to 0.2
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 1.2 to 2.0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 28.1 to 34.6
0 to 0.1
Residuals, % 0
0 to 0.5