MakeItFrom.com
Menu (ESC)

C48200 Brass vs. ACI-ASTM CA6N Steel

C48200 brass belongs to the copper alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15 to 40
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 400 to 500
1080
Tensile Strength: Yield (Proof), MPa 160 to 320
1060

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 47
35
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
2900
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
38
Strength to Weight: Bending, points 15 to 17
30
Thermal Diffusivity, mm2/s 38
6.1
Thermal Shock Resistance, points 13 to 16
40

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
77.9 to 83.5
Lead (Pb), % 0.4 to 1.0
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0 to 0.4
0