MakeItFrom.com
Menu (ESC)

C48200 Brass vs. AISI 302 Stainless Steel

C48200 brass belongs to the copper alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15 to 40
4.5 to 46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 260 to 300
400 to 830
Tensile Strength: Ultimate (UTS), MPa 400 to 500
580 to 1430
Tensile Strength: Yield (Proof), MPa 160 to 320
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
710
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
140 to 3070
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
21 to 51
Strength to Weight: Bending, points 15 to 17
20 to 36
Thermal Diffusivity, mm2/s 38
4.4
Thermal Shock Resistance, points 13 to 16
12 to 31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
67.9 to 75
Lead (Pb), % 0.4 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0 to 0.4
0