MakeItFrom.com
Menu (ESC)

C48200 Brass vs. AISI 302B Stainless Steel

C48200 brass belongs to the copper alloys classification, while AISI 302B stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is AISI 302B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15 to 40
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 260 to 300
410
Tensile Strength: Ultimate (UTS), MPa 400 to 500
580
Tensile Strength: Yield (Proof), MPa 160 to 320
230

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 900
1400
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 47
43
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
210
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
21
Strength to Weight: Bending, points 15 to 17
20
Thermal Diffusivity, mm2/s 38
4.4
Thermal Shock Resistance, points 13 to 16
13

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
65.7 to 73
Lead (Pb), % 0.4 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
2.0 to 3.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0 to 0.4
0