MakeItFrom.com
Menu (ESC)

C48200 Brass vs. AISI 316N Stainless Steel

C48200 brass belongs to the copper alloys classification, while AISI 316N stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is AISI 316N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15 to 40
9.0 to 39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 260 to 300
420 to 690
Tensile Strength: Ultimate (UTS), MPa 400 to 500
620 to 1160
Tensile Strength: Yield (Proof), MPa 160 to 320
270 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
940
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
19
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 47
53
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
95 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
180 to 1880
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
22 to 41
Strength to Weight: Bending, points 15 to 17
20 to 31
Thermal Diffusivity, mm2/s 38
4.1
Thermal Shock Resistance, points 13 to 16
14 to 26

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
61.9 to 71.9
Lead (Pb), % 0.4 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0 to 0.4
0