MakeItFrom.com
Menu (ESC)

C48200 Brass vs. AWS BNi-11

C48200 brass belongs to the copper alloys classification, while AWS BNi-11 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is AWS BNi-11.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 400 to 500
600

Thermal Properties

Latent Heat of Fusion, J/g 170
340
Melting Completion (Liquidus), °C 900
1100
Melting Onset (Solidus), °C 890
970
Specific Heat Capacity, J/kg-K 380
450
Thermal Expansion, µm/m-K 21
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.0
9.1
Embodied Carbon, kg CO2/kg material 2.7
11
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 330
230

Common Calculations

Stiffness to Weight: Axial, points 7.2
12
Stiffness to Weight: Bending, points 19
21
Strength to Weight: Axial, points 14 to 17
18
Strength to Weight: Bending, points 15 to 17
17
Thermal Shock Resistance, points 13 to 16
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.2 to 3.1
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
9.0 to 11.8
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
2.5 to 4.0
Lead (Pb), % 0.4 to 1.0
0
Nickel (Ni), % 0
62.9 to 71.2
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
3.4 to 4.3
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.050
Tungsten (W), % 0
11.5 to 12.8
Zinc (Zn), % 35.5 to 40.1
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5