MakeItFrom.com
Menu (ESC)

C48200 Brass vs. EN 1.4903 Stainless Steel

C48200 brass belongs to the copper alloys classification, while EN 1.4903 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15 to 40
20 to 21
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Shear Strength, MPa 260 to 300
420
Tensile Strength: Ultimate (UTS), MPa 400 to 500
670 to 680
Tensile Strength: Yield (Proof), MPa 160 to 320
500

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
650
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 47
36
Embodied Water, L/kg 330
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
650
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
24
Strength to Weight: Bending, points 15 to 17
22
Thermal Diffusivity, mm2/s 38
7.0
Thermal Shock Resistance, points 13 to 16
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 59 to 62
0 to 0.3
Iron (Fe), % 0 to 0.1
87.1 to 90.5
Lead (Pb), % 0.4 to 1.0
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.0
0
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0 to 0.4
0