MakeItFrom.com
Menu (ESC)

C48200 Brass vs. Grade 24 Titanium

C48200 brass belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 15 to 40
11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Shear Strength, MPa 260 to 300
610
Tensile Strength: Ultimate (UTS), MPa 400 to 500
1010
Tensile Strength: Yield (Proof), MPa 160 to 320
940

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
340
Melting Completion (Liquidus), °C 900
1610
Melting Onset (Solidus), °C 890
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 21
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 2.7
43
Embodied Energy, MJ/kg 47
710
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
4160
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 14 to 17
63
Strength to Weight: Bending, points 15 to 17
50
Thermal Diffusivity, mm2/s 38
2.9
Thermal Shock Resistance, points 13 to 16
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 59 to 62
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0.4 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0
0 to 0.4