MakeItFrom.com
Menu (ESC)

C48200 Brass vs. Sintered 2014 Aluminum

C48200 brass belongs to the copper alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C48200 brass and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 15 to 40
0.5 to 3.0
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 400 to 500
140 to 290
Tensile Strength: Yield (Proof), MPa 160 to 320
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
650
Melting Onset (Solidus), °C 890
560
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
33
Electrical Conductivity: Equal Weight (Specific), % IACS 29
100

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
68 to 560
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 14 to 17
13 to 27
Strength to Weight: Bending, points 15 to 17
20 to 33
Thermal Diffusivity, mm2/s 38
51
Thermal Shock Resistance, points 13 to 16
6.2 to 13

Alloy Composition

Aluminum (Al), % 0
91.5 to 96.3
Copper (Cu), % 59 to 62
3.5 to 5.0
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0.4 to 1.0
0
Magnesium (Mg), % 0
0.2 to 0.8
Silicon (Si), % 0
0 to 1.2
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0
0 to 1.5