C48200 Brass vs. C69710 Brass
Both C48200 brass and C69710 brass are copper alloys. They have 79% of their average alloy composition in common.
For each property being compared, the top bar is C48200 brass and the bottom bar is C69710 brass.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
110 |
Elongation at Break, % | 15 to 40 | |
25 |
Poisson's Ratio | 0.31 | |
0.32 |
Shear Modulus, GPa | 40 | |
41 |
Shear Strength, MPa | 260 to 300 | |
300 |
Tensile Strength: Ultimate (UTS), MPa | 400 to 500 | |
470 |
Tensile Strength: Yield (Proof), MPa | 160 to 320 | |
230 |
Thermal Properties
Latent Heat of Fusion, J/g | 170 | |
240 |
Maximum Temperature: Mechanical, °C | 120 | |
160 |
Melting Completion (Liquidus), °C | 900 | |
930 |
Melting Onset (Solidus), °C | 890 | |
880 |
Specific Heat Capacity, J/kg-K | 380 | |
400 |
Thermal Conductivity, W/m-K | 120 | |
40 |
Thermal Expansion, µm/m-K | 21 | |
19 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 26 | |
8.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 29 | |
8.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 23 | |
26 |
Density, g/cm3 | 8.0 | |
8.3 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
2.7 |
Embodied Energy, MJ/kg | 47 | |
44 |
Embodied Water, L/kg | 330 | |
310 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 61 to 140 | |
99 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 120 to 500 | |
250 |
Stiffness to Weight: Axial, points | 7.2 | |
7.3 |
Stiffness to Weight: Bending, points | 19 | |
19 |
Strength to Weight: Axial, points | 14 to 17 | |
16 |
Strength to Weight: Bending, points | 15 to 17 | |
16 |
Thermal Diffusivity, mm2/s | 38 | |
12 |
Thermal Shock Resistance, points | 13 to 16 | |
16 |
Alloy Composition
Arsenic (As), % | 0 | |
0.030 to 0.060 |
Copper (Cu), % | 59 to 62 | |
75 to 80 |
Iron (Fe), % | 0 to 0.1 | |
0 to 0.2 |
Lead (Pb), % | 0.4 to 1.0 | |
0.5 to 1.5 |
Manganese (Mn), % | 0 | |
0 to 0.4 |
Silicon (Si), % | 0 | |
2.5 to 3.5 |
Tin (Sn), % | 0.5 to 1.0 | |
0 |
Zinc (Zn), % | 35.5 to 40.1 | |
13.8 to 22 |
Residuals, % | 0 | |
0 to 0.5 |