MakeItFrom.com
Menu (ESC)

C48200 Brass vs. N06060 Nickel

C48200 brass belongs to the copper alloys classification, while N06060 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C48200 brass and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 15 to 40
45
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
82
Shear Strength, MPa 260 to 300
490
Tensile Strength: Ultimate (UTS), MPa 400 to 500
700
Tensile Strength: Yield (Proof), MPa 160 to 320
270

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1510
Melting Onset (Solidus), °C 890
1450
Specific Heat Capacity, J/kg-K 380
430
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
65
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 140
250
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 14 to 17
22
Strength to Weight: Bending, points 15 to 17
20
Thermal Shock Resistance, points 13 to 16
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 59 to 62
0.25 to 1.3
Iron (Fe), % 0 to 0.1
0 to 14
Lead (Pb), % 0.4 to 1.0
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0.5 to 1.0
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 35.5 to 40.1
0
Residuals, % 0 to 0.4
0