MakeItFrom.com
Menu (ESC)

C48500 Brass vs. 7010 Aluminum

C48500 brass belongs to the copper alloys classification, while 7010 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C48500 brass and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 13 to 40
3.9 to 6.8
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 39
26
Shear Strength, MPa 250 to 300
300 to 340
Tensile Strength: Ultimate (UTS), MPa 400 to 500
520 to 590
Tensile Strength: Yield (Proof), MPa 160 to 320
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
480
Specific Heat Capacity, J/kg-K 380
860
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
40
Electrical Conductivity: Equal Weight (Specific), % IACS 29
120

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
1230 to 2130
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 14 to 17
47 to 54
Strength to Weight: Bending, points 15 to 17
47 to 52
Thermal Diffusivity, mm2/s 38
58
Thermal Shock Resistance, points 13 to 17
22 to 26

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.6
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 59 to 62
1.5 to 2.0
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 1.3 to 2.2
0
Magnesium (Mg), % 0
2.1 to 2.6
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.12
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 34.3 to 39.2
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0
0 to 0.15