MakeItFrom.com
Menu (ESC)

C48500 Brass vs. 7076 Aluminum

C48500 brass belongs to the copper alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C48500 brass and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 13 to 40
6.2
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 39
27
Shear Strength, MPa 250 to 300
310
Tensile Strength: Ultimate (UTS), MPa 400 to 500
530
Tensile Strength: Yield (Proof), MPa 160 to 320
460

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
460
Specific Heat Capacity, J/kg-K 380
860
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
35
Electrical Conductivity: Equal Weight (Specific), % IACS 29
100

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
1510
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 14 to 17
49
Strength to Weight: Bending, points 15 to 17
48
Thermal Diffusivity, mm2/s 38
54
Thermal Shock Resistance, points 13 to 17
23

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.2
Copper (Cu), % 59 to 62
0.3 to 1.0
Iron (Fe), % 0 to 0.1
0 to 0.6
Lead (Pb), % 1.3 to 2.2
0
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0
0.3 to 0.8
Silicon (Si), % 0
0 to 0.4
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 34.3 to 39.2
7.0 to 8.0
Residuals, % 0
0 to 0.15