MakeItFrom.com
Menu (ESC)

C48500 Brass vs. ASTM A182 Grade F3V

C48500 brass belongs to the copper alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 40
20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
74
Shear Strength, MPa 250 to 300
410
Tensile Strength: Ultimate (UTS), MPa 400 to 500
660
Tensile Strength: Yield (Proof), MPa 160 to 320
470

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
470
Melting Completion (Liquidus), °C 900
1470
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.2
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 46
33
Embodied Water, L/kg 330
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
590
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
23
Strength to Weight: Bending, points 15 to 17
21
Thermal Diffusivity, mm2/s 38
10
Thermal Shock Resistance, points 13 to 17
19

Alloy Composition

Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
94.4 to 95.7
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0