MakeItFrom.com
Menu (ESC)

C48500 Brass vs. EN 1.4611 Stainless Steel

C48500 brass belongs to the copper alloys classification, while EN 1.4611 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is EN 1.4611 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 40
21
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 39
78
Shear Strength, MPa 250 to 300
330
Tensile Strength: Ultimate (UTS), MPa 400 to 500
530
Tensile Strength: Yield (Proof), MPa 160 to 320
280

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
970
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 46
36
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
91
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
190
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
19
Strength to Weight: Bending, points 15 to 17
19
Thermal Diffusivity, mm2/s 38
5.7
Thermal Shock Resistance, points 13 to 17
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 59 to 62
0 to 0.5
Iron (Fe), % 0 to 0.1
73.3 to 80.8
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0