MakeItFrom.com
Menu (ESC)

C48500 Brass vs. EN AC-46500 Aluminum

C48500 brass belongs to the copper alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C48500 brass and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
74
Elongation at Break, % 13 to 40
1.0
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
28
Tensile Strength: Ultimate (UTS), MPa 400 to 500
270
Tensile Strength: Yield (Proof), MPa 160 to 320
160

Thermal Properties

Latent Heat of Fusion, J/g 170
520
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
610
Melting Onset (Solidus), °C 890
520
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 120
100
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
26
Electrical Conductivity: Equal Weight (Specific), % IACS 29
81

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.1
2.9
Embodied Carbon, kg CO2/kg material 2.7
7.6
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 330
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
170
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 14 to 17
26
Strength to Weight: Bending, points 15 to 17
32
Thermal Diffusivity, mm2/s 38
41
Thermal Shock Resistance, points 13 to 17
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 59 to 62
2.0 to 4.0
Iron (Fe), % 0 to 0.1
0 to 1.3
Lead (Pb), % 1.3 to 2.2
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0
8.0 to 11
Tin (Sn), % 0.5 to 1.0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 34.3 to 39.2
0 to 3.0
Residuals, % 0
0 to 0.25