MakeItFrom.com
Menu (ESC)

C48500 Brass vs. SAE-AISI 1141 Steel

C48500 brass belongs to the copper alloys classification, while SAE-AISI 1141 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is SAE-AISI 1141 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 40
11 to 17
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
72
Shear Strength, MPa 250 to 300
460 to 480
Tensile Strength: Ultimate (UTS), MPa 400 to 500
740 to 810
Tensile Strength: Yield (Proof), MPa 160 to 320
400 to 700

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
10
Electrical Conductivity: Equal Weight (Specific), % IACS 29
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 46
19
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
86 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
430 to 1290
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
26 to 29
Strength to Weight: Bending, points 15 to 17
23 to 25
Thermal Diffusivity, mm2/s 38
14
Thermal Shock Resistance, points 13 to 17
24 to 26

Alloy Composition

Carbon (C), % 0
0.37 to 0.45
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
97.7 to 98.2
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0