MakeItFrom.com
Menu (ESC)

C48500 Brass vs. C36500 Muntz Metal

Both C48500 brass and C36500 Muntz Metal are copper alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 13 to 40
40
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 39
39
Shear Strength, MPa 250 to 300
270
Tensile Strength: Ultimate (UTS), MPa 400 to 500
400
Tensile Strength: Yield (Proof), MPa 160 to 320
160

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 900
900
Melting Onset (Solidus), °C 890
890
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
28
Electrical Conductivity: Equal Weight (Specific), % IACS 29
32

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 46
46
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
130
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
120
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 14 to 17
14
Strength to Weight: Bending, points 15 to 17
15
Thermal Diffusivity, mm2/s 38
40
Thermal Shock Resistance, points 13 to 17
13

Alloy Composition

Copper (Cu), % 59 to 62
58 to 61
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 1.3 to 2.2
0.25 to 0.7
Tin (Sn), % 0.5 to 1.0
0 to 0.25
Zinc (Zn), % 34.3 to 39.2
37.5 to 41.8
Residuals, % 0
0 to 0.4