MakeItFrom.com
Menu (ESC)

C48500 Brass vs. C70700 Copper-nickel

Both C48500 brass and C70700 copper-nickel are copper alloys. They have 61% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 13 to 40
39
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 39
46
Shear Strength, MPa 250 to 300
220
Tensile Strength: Ultimate (UTS), MPa 400 to 500
320
Tensile Strength: Yield (Proof), MPa 160 to 320
110

Thermal Properties

Latent Heat of Fusion, J/g 170
220
Maximum Temperature: Mechanical, °C 120
220
Melting Completion (Liquidus), °C 900
1120
Melting Onset (Solidus), °C 890
1060
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
59
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
11
Electrical Conductivity: Equal Weight (Specific), % IACS 29
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
51
Stiffness to Weight: Axial, points 7.1
7.6
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 14 to 17
10
Strength to Weight: Bending, points 15 to 17
12
Thermal Diffusivity, mm2/s 38
17
Thermal Shock Resistance, points 13 to 17
12

Alloy Composition

Copper (Cu), % 59 to 62
88.5 to 90.5
Iron (Fe), % 0 to 0.1
0 to 0.050
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
9.5 to 10.5
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0
0 to 0.5