MakeItFrom.com
Menu (ESC)

C48600 Brass vs. 354.0 Aluminum

C48600 brass belongs to the copper alloys classification, while 354.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C48600 brass and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 20 to 25
2.4 to 3.0
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
27
Tensile Strength: Ultimate (UTS), MPa 280 to 360
360 to 380
Tensile Strength: Yield (Proof), MPa 110 to 170
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 170
530
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
600
Melting Onset (Solidus), °C 890
550
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
32
Electrical Conductivity: Equal Weight (Specific), % IACS 28
110

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.8
7.8
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
540 to 670
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 19
52
Strength to Weight: Axial, points 9.5 to 12
37 to 39
Strength to Weight: Bending, points 12 to 14
42 to 44
Thermal Diffusivity, mm2/s 36
52
Thermal Shock Resistance, points 9.3 to 12
17 to 18

Alloy Composition

Aluminum (Al), % 0
87.3 to 89.4
Arsenic (As), % 0.020 to 0.25
0
Copper (Cu), % 59 to 62
1.6 to 2.0
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 1.0 to 2.5
0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
8.6 to 9.4
Tin (Sn), % 0.3 to 1.5
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 33.4 to 39.7
0 to 0.1
Residuals, % 0
0 to 0.15