MakeItFrom.com
Menu (ESC)

C48600 Brass vs. ACI-ASTM CF16F Steel

C48600 brass belongs to the copper alloys classification, while ACI-ASTM CF16F steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is ACI-ASTM CF16F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 25
50
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 280 to 360
530
Tensile Strength: Yield (Proof), MPa 110 to 170
280

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
18
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
220
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
190
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 12
19
Strength to Weight: Bending, points 12 to 14
19
Thermal Diffusivity, mm2/s 36
4.3
Thermal Shock Resistance, points 9.3 to 12
12

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
61.3 to 72.8
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.17
Selenium (Se), % 0
0.2 to 0.35
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0