MakeItFrom.com
Menu (ESC)

C48600 Brass vs. EN 1.4869 Casting Alloy

C48600 brass belongs to the copper alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 20 to 25
5.7
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
80
Tensile Strength: Ultimate (UTS), MPa 280 to 360
540
Tensile Strength: Yield (Proof), MPa 110 to 170
310

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
1200
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
70
Density, g/cm3 8.1
8.5
Embodied Carbon, kg CO2/kg material 2.8
7.7
Embodied Energy, MJ/kg 47
110
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
26
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
230
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 9.5 to 12
18
Strength to Weight: Bending, points 12 to 14
17
Thermal Diffusivity, mm2/s 36
2.6
Thermal Shock Resistance, points 9.3 to 12
14

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
11.4 to 23.6
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.3 to 1.5
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0