MakeItFrom.com
Menu (ESC)

C48600 Brass vs. EN 1.4941 Stainless Steel

C48600 brass belongs to the copper alloys classification, while EN 1.4941 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 25
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 180 to 230
400
Tensile Strength: Ultimate (UTS), MPa 280 to 360
590
Tensile Strength: Yield (Proof), MPa 110 to 170
210

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
940
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
180
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
110
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 12
21
Strength to Weight: Bending, points 12 to 14
20
Thermal Diffusivity, mm2/s 36
4.3
Thermal Shock Resistance, points 9.3 to 12
13

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
65.1 to 73.6
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.3 to 1.5
0
Titanium (Ti), % 0
0.4 to 0.8
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0