MakeItFrom.com
Menu (ESC)

C48600 Brass vs. EN 1.4986 Stainless Steel

C48600 brass belongs to the copper alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 25
18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 180 to 230
460
Tensile Strength: Ultimate (UTS), MPa 280 to 360
750
Tensile Strength: Yield (Proof), MPa 110 to 170
560

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
940
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
25
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.8
Embodied Energy, MJ/kg 47
67
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
120
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
790
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 12
26
Strength to Weight: Bending, points 12 to 14
23
Thermal Diffusivity, mm2/s 36
4.0
Thermal Shock Resistance, points 9.3 to 12
16

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
59.4 to 66.6
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0