MakeItFrom.com
Menu (ESC)

C48600 Brass vs. EN 1.7386 Steel

C48600 brass belongs to the copper alloys classification, while EN 1.7386 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is EN 1.7386 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 25
18 to 21
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 180 to 230
340 to 410
Tensile Strength: Ultimate (UTS), MPa 280 to 360
550 to 670
Tensile Strength: Yield (Proof), MPa 110 to 170
240 to 440

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
600
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
10

Otherwise Unclassified Properties

Base Metal Price, % relative 24
6.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 47
28
Embodied Water, L/kg 330
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
92 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
150 to 490
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 12
20 to 24
Strength to Weight: Bending, points 12 to 14
19 to 22
Thermal Diffusivity, mm2/s 36
6.9
Thermal Shock Resistance, points 9.3 to 12
15 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 59 to 62
0 to 0.3
Iron (Fe), % 0
86.8 to 90.5
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0