MakeItFrom.com
Menu (ESC)

C48600 Brass vs. EN 1.8932 Steel

C48600 brass belongs to the copper alloys classification, while EN 1.8932 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is EN 1.8932 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 25
20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 180 to 230
370
Tensile Strength: Ultimate (UTS), MPa 280 to 360
600
Tensile Strength: Yield (Proof), MPa 110 to 170
370

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
410
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 47
24
Embodied Water, L/kg 330
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
100
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
370
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 12
21
Strength to Weight: Bending, points 12 to 14
20
Thermal Diffusivity, mm2/s 36
11
Thermal Shock Resistance, points 9.3 to 12
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 59 to 62
0 to 0.2
Iron (Fe), % 0
95.5 to 98.9
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
1.0 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.3 to 1.5
0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0