MakeItFrom.com
Menu (ESC)

C48600 Brass vs. Nickel 22

C48600 brass belongs to the copper alloys classification, while nickel 22 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is nickel 22.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
220
Elongation at Break, % 20 to 25
49
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
84
Shear Strength, MPa 180 to 230
560
Tensile Strength: Ultimate (UTS), MPa 280 to 360
790
Tensile Strength: Yield (Proof), MPa 110 to 170
360

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 900
1390
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
70
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 47
170
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
320
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
300
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 9.5 to 12
25
Strength to Weight: Bending, points 12 to 14
21
Thermal Diffusivity, mm2/s 36
2.7
Thermal Shock Resistance, points 9.3 to 12
24

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
2.0 to 6.0
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 0.015
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
50.8 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.3 to 1.5
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0