MakeItFrom.com
Menu (ESC)

C48600 Brass vs. Nickel 686

C48600 brass belongs to the copper alloys classification, while nickel 686 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
220
Elongation at Break, % 20 to 25
51
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
77
Shear Strength, MPa 180 to 230
560
Tensile Strength: Ultimate (UTS), MPa 280 to 360
780
Tensile Strength: Yield (Proof), MPa 110 to 170
350

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1380
Melting Onset (Solidus), °C 890
1340
Specific Heat Capacity, J/kg-K 380
420
Thermal Conductivity, W/m-K 110
9.8
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
70
Density, g/cm3 8.1
9.0
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 47
170
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
320
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
280
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 9.5 to 12
24
Strength to Weight: Bending, points 12 to 14
21
Thermal Diffusivity, mm2/s 36
2.6
Thermal Shock Resistance, points 9.3 to 12
21

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
0 to 5.0
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.3 to 1.5
0
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0