MakeItFrom.com
Menu (ESC)

C48600 Brass vs. S32053 Stainless Steel

C48600 brass belongs to the copper alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 20 to 25
46
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 55 to 58
83
Shear Modulus, GPa 39
80
Shear Strength, MPa 180 to 230
510
Tensile Strength: Ultimate (UTS), MPa 280 to 360
730
Tensile Strength: Yield (Proof), MPa 110 to 170
330

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
33
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.8
6.1
Embodied Energy, MJ/kg 47
83
Embodied Water, L/kg 330
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
270
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
270
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 12
25
Strength to Weight: Bending, points 12 to 14
22
Thermal Diffusivity, mm2/s 36
3.3
Thermal Shock Resistance, points 9.3 to 12
16

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
41.7 to 48.8
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0