MakeItFrom.com
Menu (ESC)

C49300 Brass vs. 2017A Aluminum

C49300 brass belongs to the copper alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C49300 brass and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 4.5 to 20
2.2 to 14
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 270 to 290
120 to 270
Tensile Strength: Ultimate (UTS), MPa 430 to 520
200 to 460
Tensile Strength: Yield (Proof), MPa 210 to 410
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
220
Melting Completion (Liquidus), °C 880
650
Melting Onset (Solidus), °C 840
510
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 88
150
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
34
Electrical Conductivity: Equal Weight (Specific), % IACS 17
100

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 370
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
90 to 570
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 15 to 18
19 to 42
Strength to Weight: Bending, points 16 to 18
26 to 44
Thermal Diffusivity, mm2/s 29
56
Thermal Shock Resistance, points 14 to 18
8.9 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.5
91.3 to 95.5
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 58 to 62
3.5 to 4.5
Iron (Fe), % 0 to 0.1
0 to 0.7
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 0.030
0.4 to 1.0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0.2 to 0.8
Tin (Sn), % 1.0 to 1.8
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 30.6 to 40.5
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15