MakeItFrom.com
Menu (ESC)

C49300 Brass vs. 2218 Aluminum

C49300 brass belongs to the copper alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C49300 brass and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
73
Elongation at Break, % 4.5 to 20
6.8 to 10
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 270 to 290
210 to 250
Tensile Strength: Ultimate (UTS), MPa 430 to 520
330 to 430
Tensile Strength: Yield (Proof), MPa 210 to 410
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
220
Melting Completion (Liquidus), °C 880
640
Melting Onset (Solidus), °C 840
510
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 88
140
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
37
Electrical Conductivity: Equal Weight (Specific), % IACS 17
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.0
3.1
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 370
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
450 to 650
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 15 to 18
30 to 39
Strength to Weight: Bending, points 16 to 18
34 to 41
Thermal Diffusivity, mm2/s 29
52
Thermal Shock Resistance, points 14 to 18
15 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.5
88.8 to 93.6
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 58 to 62
3.5 to 4.5
Iron (Fe), % 0 to 0.1
0 to 1.0
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 0.030
0 to 0.2
Nickel (Ni), % 0 to 1.5
1.7 to 2.3
Phosphorus (P), % 0 to 0.2
0
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 0.9
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0 to 0.25
Residuals, % 0
0 to 0.15