MakeItFrom.com
Menu (ESC)

C49300 Brass vs. 707.0 Aluminum

C49300 brass belongs to the copper alloys classification, while 707.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C49300 brass and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 4.5 to 20
1.7 to 3.4
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 430 to 520
270 to 300
Tensile Strength: Yield (Proof), MPa 210 to 410
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 880
630
Melting Onset (Solidus), °C 840
600
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 88
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
37
Electrical Conductivity: Equal Weight (Specific), % IACS 17
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 370
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
210 to 430
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 15 to 18
26 to 29
Strength to Weight: Bending, points 16 to 18
32 to 34
Thermal Diffusivity, mm2/s 29
58
Thermal Shock Resistance, points 14 to 18
12 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.5
90.5 to 93.6
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 58 to 62
0 to 0.2
Iron (Fe), % 0 to 0.1
0 to 0.8
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
1.8 to 2.4
Manganese (Mn), % 0 to 0.030
0.4 to 0.6
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Tin (Sn), % 1.0 to 1.8
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 30.6 to 40.5
4.0 to 4.5
Residuals, % 0
0 to 0.15