MakeItFrom.com
Menu (ESC)

C49300 Brass vs. EN 1.4110 Stainless Steel

C49300 brass belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
11 to 14
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 290
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 430 to 520
770 to 1720
Tensile Strength: Yield (Proof), MPa 210 to 410
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
790
Melting Completion (Liquidus), °C 880
1440
Melting Onset (Solidus), °C 840
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 88
30
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 17
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
8.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.3
Embodied Energy, MJ/kg 50
33
Embodied Water, L/kg 370
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
480 to 4550
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 18
28 to 62
Strength to Weight: Bending, points 16 to 18
24 to 41
Thermal Diffusivity, mm2/s 29
8.1
Thermal Shock Resistance, points 14 to 18
27 to 60

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
81.4 to 86
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0 to 0.040
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 1.8
0
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0